Javascript required
Skip to content Skip to sidebar Skip to footer

Review of Extraordinary Optical Transmission Theory and Application in Biochemical Analysis

Interference blueprint of double slits, where the slit width is 1 third the wavelength.

Extraordinary optical transmission (EOT) is the phenomenon of profoundly enhanced manual of light through a subwavelength aperture in an otherwise opaque metal film which has been patterned with a regularly repeating periodic structure. Mostly when light of a certain wavelength falls on a subwavelength aperture, it is diffracted isotropically in all directions evenly, with minimal far-field transmission. This is the understanding from classical aperture theory as described by Bethe.[1] In EOT all the same, the regularly repeating structure enables much college manual efficiency to occur, up to several orders of magnitude greater than that predicted past classical aperture theory. Information technology was first described in 1998.[2] [3]

This phenomenon that was fully analyzed with a microscopic scattering model is partly attributed to the presence of surface plasmon resonances[four] and constructive interference. A surface plasmon (SP) is a collective excitation of the electrons at the junction between a usher and an insulator and is one of a series of interactions betwixt light and a metal surface chosen Plasmonics.

Currently, there is experimental evidence of EOT out of the optical range.[5] Analytical approaches too predict EOT on perforated plates with a perfect conductor model.[half-dozen] [7] [8] Holes can somewhat emulate plasmons at other regions of the electromagnetic spectrum where they do non exist.[nine] [10] [11] Then, the plasmonic contribution is a very particular peculiarity of the EOT resonance and should non be taken as the main contribution to the phenomenon. More than recent work has shown a stiff contribution from overlapping evanescent wave coupling,[12] which explains why surface plasmon resonance enhances the EOT effect on both sides of a metallic film at optical frequencies, but accounts for the terahertz-range transmission.

Elementary belittling explanations of this phenomenon have been elaborated, emphasizing the similarity betwixt arrays of particles and arrays of holes, and establishing that the phenomenon is dominated by diffraction.[xiii] [xiv] [15]

Applications [edit]

EOT is expected to play an of import role in the creation of components of efficient photonic integrated circuits (PICs). Photonic integrated circuits are analogous to electronic circuits but based upon photons instead of electrons.

1 of the most ground-breaking results linked to EOT is the possibility to implement a Left-Handed Metamaterial (LHM) by but stacking pigsty arrays.[xvi]

EOT-based chemical and biological sensing (for example, improving ELISA based antibody detection) is another major area of research.[17] [xviii] [19] [20] [21] [22] [23] [24] Much like in a traditional surface plasmon resonance sensor, the EOT efficiency varies with the wavelength of the incident low-cal, and the value of the in-plane wavevector component. This can be exploited as a ways of transducing chemic binding events by measuring a change in the local dielectric abiding (due to bounden of the target species) every bit a shift in the spectral location and/or intensity of the EOT top. Variation of the hole geometry alters the spectral location of the EOT peak such that the chemical binding events tin exist optically detected at a desired wavelength.[25] EOT-based sensing offers i fundamental advantage over a Kretschmann-mode SPR chemical sensor, that of being an inherently nanometer-micrometer scale device; it is therefore particularly acquiescent to miniaturization.

References [edit]

  1. ^ Bethe, H. (1944). "Theory of Diffraction past Small Holes". Physical Review. 66 (seven–8): 163–182. Bibcode:1944PhRv...66..163B. doi:10.1103/PhysRev.66.163.
  2. ^ T. Westward. Ebbesen; H. J. Lezec; H. F. Ghaemi; T. Thio; P. A. Wolff (1998). "Extraordinary optical manual through sub-wavelength hole arrays" (PDF). Nature. 391 (6668): 667–669. Bibcode:1998Natur.391..667E. doi:x.1038/35570. S2CID 205024396.
  3. ^ Ebbesen, T. Due west.; Ghaemi, H. F.; Thio, Tineke; Grupp, D. E.; Lezec, H. J (March 1998). "Extraordinary Optical Transmission through Sub-wavelength Hole Arrays". Abstruse from a Talk at the 1998 American Physical Order's Annual March Meeting: S15.11. Bibcode:1998APS..MAR.S1511E.
  4. ^ H. Liu; P. Lalanne (2008). "Microscopic theory of the extraordinary optical manual". Nature. 452 (7188): 728–731. Bibcode:2008Natur.452..728L. doi:10.1038/nature06762. PMID 18401405. S2CID 4400944.
  5. ^ 1000. Beruete; M. Sorolla; I. Campillo; J.S. Dolado; L. Martín-Moreno; J. Bravo-Abad; F. J. García-Vidal (2005). "Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates". IEEE Transactions on Antennas and Propagation. 53 (6): 1897–1903. Bibcode:2005ITAP...53.1897B. doi:10.1109/TAP.2005.848689. S2CID 7510282.
  6. ^ C.C. Chen (1970). "Transmission through a Conducting Screen Perforated Periodically with Apertures". IEEE Trans. Microw. Theory Tech. 18 (9): 627–632. Bibcode:1970ITMTT..18..627C. doi:x.1109/TMTT.1970.1127298.
  7. ^ 50. Martín-Moreno; F. J. García-Vidal; H. J. Lezec; K. Chiliad. Pellerin; T. Thio; J. B. Pendry; T.W. Ebbesen (2001). "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays". Phys. Rev. Lett. 86 (6): 1114–1117. arXiv:cond-mat/0008204. Bibcode:2001PhRvL..86.1114M. doi:10.1103/PhysRevLett.86.1114. PMID 11178023. S2CID 17392720.
  8. ^ F. J. Garcia de Abajo, R. Gomez-Medina, and J. J. Saenz (2005). "Full transmission through perfect-conductor subwavelength hole arrays". Phys. Rev. East. 72 (i Pt 2): 016608. arXiv:0708.0991. Bibcode:2005PhRvE..72a6608G. doi:10.1103/PhysRevE.72.016608. PMID 16090108. S2CID 31746296. {{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ R. Ulrich; M. Tacke (1972). "Submillimeter waveguiding on periodic metal structure". Appl. Phys. Lett. 22 (5): 251–253. Bibcode:1973ApPhL..22..251U. doi:10.1063/1.1654628.
  10. ^ J. B. Pendry; L. Martín-Moreno; F. J. García-Vidal (2004). "Mimicking surface plasmons with structured surfaces". Science. 305 (5685): 847–848. Bibcode:2004Sci...305..847P. doi:10.1126/science.1098999. PMID 15247438. S2CID 44412157.
  11. ^ F. J. Garcia de Abajo and J. J. Saenz (2005). "Electromagnetic surface modes in structured perfect-conductor surfaces". Phys. Rev. Lett. 95 (23): 233901. arXiv:cond-mat/0506087. Bibcode:2005PhRvL..95w3901G. doi:x.1103/PhysRevLett.95.233901. PMID 16384307. S2CID 35201303.
  12. ^ Z. Y. Fan; L. Zhan; X. Hu; Y. X. Xia (2008). "Critical process of extraordinary optical transmission through periodic subwavelength hole assortment: Hole-assisted evanescent-field coupling". Optics Communications. 281 (21): 5467–5471. Bibcode:2008OptCo.281.5467F. doi:10.1016/j.optcom.2008.07.077.
  13. ^ F. J. García de Abajo (2007). "Light handful by particle and hole arrays". Reviews of Modernistic Physics. 79 (4): 1267–1290. arXiv:0903.1671. Bibcode:2007RvMP...79.1267G. doi:10.1103/RevModPhys.79.1267. S2CID 18698507.
  14. ^ B. Ung; Y. Sheng (2008). "Optical surface waves over metallo-dielectric nanostructures: Sommerfeld integrals revisited". Optics Express. 16 (12): 9073–9086. arXiv:0803.1696. Bibcode:2008OExpr..xvi.9073U. doi:10.1364/OE.16.009073. PMID 18545619. S2CID 31651739.
  15. ^ M. W. Maqsood; R. Mehfuz; K. J. Chau (2010). "Loftier-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit". Optics Limited. 18 (21): 21669–21677. Bibcode:2011OExpr..1910429C. doi:10.1364/OE.19.010429. hdl:10261/47346. PMID 21643298.
  16. ^ One thousand. Beruete; M. Sorolla; I. Campillo (2006). "Left-Handed Extraordinary Optical Manual through a Photonic Crystal of Subwavelength Hole Arrays". Optics Limited. 14 (12): 5445–5455. Bibcode:2006OExpr..fourteen.5445B. doi:10.1364/OE.xiv.005445. hdl:2454/31091. PMID 19516710.
  17. ^ A. De Leebeeck; L. K. South. Kumar; V. de Lange; D. Sinton; R. Gordon; A. G. Brolo (2007). "On-flake surface-based detection with nanohole arrays". Anal Chem. 79 (eleven): 4094–4100. doi:10.1021/ac070001a. PMID 17447728.
  18. ^ A. G. Brolo; R. Gordon; Yard. L. Kavanagh (2008). "A new generation of sensors based on extraordinary calorie-free transmission". Acc. Chem. Res. 41 (8): 1049–1057. doi:x.1021/ar800074d. PMID 18605739.
  19. ^ N. H. Mack; J. W. Wackerly; Five. Malyarchuk; J. A. Rogers; J. S. Moore; R. Chiliad. Nuzzo (2007). "Optical transduction of chemic forces". Nano Lett. vii (3): 733–737. Bibcode:2007NanoL...vii..733M. doi:ten.1021/nl0629759. PMID 17309317.
  20. ^ J. Thou. Yao; Thou. E. Stewart; J. Maria; T. W. Lee; S. 1000. Grayness; J. A. Rogers; R. Thou. Nuzzo (2008). "Seeing molecules past middle: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity". Angewandte Chemie International Edition. 47 (27): 5013–5017. doi:ten.1002/anie.200800501. PMID 18512212.
  21. ^ P. R. H. Stark; A. East. Halleck; D. N. Larson (2005). "Curt order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the ground for a highly multiplexed biosensor technology". Methods. 37 (one): 37–47. doi:x.1016/j.ymeth.2005.05.006. PMID 16199175.
  22. ^ J. C. Yang; J. Ji; J. Thousand. Hogle; D. N. Larson (2009). "Multiplexed plasmonic sensing based on pocket-sized-dimension nanohole arrays and intensity interrogation". Biosens Bioelectron. 24 (8): 2334–8. doi:10.1016/j.bios.2008.12.011. PMC2716172. PMID 19157848.
  23. ^ J. Ji; J. G. O'Connell; D. J. D. Carter; D. Due north. Larson (2008). "High-throughput nanohole array based organisation to monitor multiple binding events in real fourth dimension". Anal Chem. 80 (7): 2491–2498. doi:10.1021/ac7023206. PMID 18307360.
  24. ^ J. C. Yang; J. Ji; J. M. Hogle; D. N. Larson (2008). "Metal nanohole arrays on fluoropolymer substrates as small label-gratis real-time bioorobes". Nano Lett. 8 (ix): 2718–2724. Bibcode:2008NanoL...8.2718Y. doi:10.1021/nl801043t. PMC2662724. PMID 18710296.
  25. ^ Mehdi Tavakoli; Yousef Seyed Jalili; Seyed Mohammad Elahi (2019). "Rayleigh-Woods bibelot approximation with FDTD simulation of plasmonic golden nanohole assortment for determination of optimum extraordinary optical transmission characteristics". Superlattices and Microstructures. 130: 454–471. Bibcode:2019SuMi..130..454T. doi:10.1016/j.spmi.2019.04.035.

follthatim.blogspot.com

Source: https://en.wikipedia.org/wiki/Extraordinary_optical_transmission